Essay On Sun In Sanskrit Language

This article is about the star. For other uses, see Sun (disambiguation).

Sun with sunspots and limb darkening as seen in visible light with solar filter.

Observation data
Mean distance
from Earth
1 au ≈ 7011149600000000000♠1.496×108 km
8 min 19 s at light speed
Visual brightness (V)−26.74[1]
Absolute magnitude4.83[1]
Spectral classificationG2V[2]
MetallicityZ = 0.0122[3]
Angular size31.6–32.7 minutes of arc[4]
Orbital characteristics
Mean distance
from Milky Way core
≈ 7020270000000000000♠2.7×1017 km
7004272000000000000♠27,200 light-years
Galactic period(2.25–2.50)×108yr
Velocity≈ 7005220000000000000♠220 km/s (orbit around the center of the Milky Way)
≈ 7004200000000000000♠20 km/s (relative to average velocity of other stars in stellar neighborhood)
≈ 7005370000000000000♠370 km/s[5] (relative to the cosmic microwave background)
Physical characteristics
Equatorial radius695,700 km,[6]
696,392 km[7]
7002109000000000000♠109 × Earth[8]
Equatorial circumference7009437900000000000♠4.379×106 km[8]
109 × Earth[8]
Surface area7018609000000000000♠6.09×1012 km2[8]
7004120000000000000♠12,000 × Earth[8]
Volume7027141000000000000♠1.41×1018 km3[8]
7006130000000000000♠1,300,000 × Earth
Mass7030198855000000000♠(1.98855±0.00025)×1030 kg[1]
7005333000000000000♠333,000 × Earth[1]
Average density7003140800000000000♠1.408 g/cm3[1][8][9]
6999255000000000000♠0.255 × Earth[1][8]
Center density (modeled)7005162200000000000♠162.2 g/cm3[1]
7001124000000000000♠12.4 × Earth
Equatorial surface gravity7002274000000000000♠274.0 m/s2[1]
7001279400000000000♠27.94 g
7004275422900000000♠27,542.29 cgs
28 × Earth[8]
Moment of inertia factor6998700000000000000♠0.070[1] (estimate)
Escape velocity
(from the surface)
7005617700000000000♠617.7 km/s[8]
55 × Earth[8]
TemperatureCenter (modeled): 7007157000000000000♠1.57×107 K[1]
Photosphere (effective): 7003577200000000000♠5,772 K[1]
Corona: ≈ 7006500000000000000♠5×106 K
Luminosity (Lsol)7026382800000000000♠3.828×1026 W[1]
≈ 7028375000000000000♠3.75×1028 lm
≈ 7001980000000000000♠98 lm/Wefficacy
Mean radiance (Isol)7007200900000000000♠2.009×107 W·m−2·sr−1
Age≈ 4.6 billion years[10][11]
Rotation characteristics
(to the ecliptic)
(to the galactic plane)
Right ascension
of North pole[12]
19 h 4 min 30 s
of North pole
63° 52' North
Sidereal rotation period
(at equator)
25.05 d[1]
(at 16° latitude)25.38 d[1]
25 d 9 h 7 min 12 s[12]
(at poles)34.4 d[1]
Rotation velocity
(at equator)
7003199694444444444♠7.189×103 km/h[8]
Photospheric composition (by mass)

The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma,[14][15] with internal convective motion that generates a magnetic field via a dynamo process.[16] It is by far the most important source of energy for life on Earth. Its diameter is about 1.39 million kilometers, i.e. 109 times that of Earth, and its mass is about 330,000 times that of Earth, accounting for about 99.86% of the total mass of the Solar System.[17] About three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.[18]

The Sun is a G-type main-sequence star (G2V) based on its spectral class. As such, it is informally referred to as a yellow dwarf. It formed approximately 4.6 billion[a][10][19] years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core. It is thought that almost all stars form by this process.

The Sun is roughly middle-aged; it has not changed dramatically for more than four billion[a] years, and will remain fairly stable for more than another five billion years. After hydrogen fusion in its core has diminished to the point at which it is no longer in hydrostatic equilibrium, the core of the Sun will experience a marked increase in density and temperature while its outer layers expand to eventually become a red giant. It is calculated that the Sun will become sufficiently large to engulf the current orbits of Mercury and Venus, and render Earth uninhabitable.

The enormous effect of the Sun on Earth has been recognized since prehistoric times, and the Sun has been regarded by some cultures as a deity. The synodic rotation of Earth and its orbit around the Sun are the basis of solar calendars, one of which is the predominant calendar in use today.

Name and etymology

The English proper name Sun developed from Old Englishsunne and may be related to south. Cognates to English sun appear in other Germanic languages, including Old Frisiansunne, sonne, Old Saxonsunna, Middle Dutchsonne, modern Dutchzon, Old High Germansunna, modern German Sonne, Old Norsesunna, and Gothicsunnō. All Germanic terms for the Sun stem from Proto-Germanic *sunnōn.[20][21]

The English weekday name Sunday stems from Old English (Sunnandæg; "Sun's day", from before 700) and is ultimately a result of a Germanic interpretation of Latin dies solis, itself a translation of the Greek ἡμέρα ἡλίου (hēméra hēlíou).[22] The Latin name for the Sun, Sol, is not common in general English language use; the adjectival form is the related word solar.[23][24] The term sol is also used by planetary astronomers to refer to the duration of a solar day on another planet, such as Mars.[25] A mean Earth solar day is approximately 24 hours, whereas a mean Martian 'sol' is 24 hours, 39 minutes, and 35.244 seconds.[26]

Religious aspects

Main article: Solar deity

Solar deities play a major role in many world religions and mythologies.[27] The ancient Sumerians believed that the sun was Utu,[28][29] the god of justice and twin brother of Inanna, the Queen of Heaven,[28] who was identified as the planet Venus.[29] Later, Utu was identified with the East Semitic god Shamash.[28][29] Utu was regarded as a helper-deity, who aided those in distress,[28] and, in iconography, he is usually portrayed with a long beard and clutching a saw,[28] which represented his role as the dispenser of justice.[28]

From at least the 4th Dynasty of Ancient Egypt, the Sun was worshipped as the god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Empire period, the Sun became identified with the dung beetle, whose spherical ball of dung was identified with the Sun. In the form of the Sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the PharaohAkhenaton.[30][31]

In Proto-Indo-European religion, the sun was personified as the goddess *Seh2ul.[32][33][21] Derivatives of this goddess in Indo-European languages include the Old NorseSól, SanskritSurya, GaulishSulis, LithuanianSaulė, and SlavicSolntse.[21] In ancient Greek religion, the sun deity was the male god Helios,[32] but traces of an earlier female solar deity are preserved in Helen of Troy.[32] In later times, Helios was syncretized with Apollo.[34]

In the Bible, Malachi 4:2 mentions the "Sun of Righteousness" (sometimes translated as the "Sun of Justice"),[35] which some Christians have interpreted as a reference to the Messiah (Christ).[36] In ancient Roman culture, Sunday was the day of the Sun god. It was adopted as the Sabbath day by Christians who did not have a Jewish background. The symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions. In paganism, the Sun was a source of life, giving warmth and illumination to mankind. It was the center of a popular cult among Romans, who would stand at dawn to catch the first rays of sunshine as they prayed. The celebration of the winter solstice (which influenced Christmas) was part of the Roman cult of the unconquered Sun (Sol Invictus). Christian churches were built with an orientation so that the congregation faced toward the sunrise in the East.[37]

Tonatiuh, the Aztec god of the sun, was usually depicted holding arrows and a shield[38] and was closely associated with the practice of human sacrifice.[38] The sun goddess Amaterasu is the most important deity in the Shinto religion,[39][40] and she is believed to be the direct ancestor of all Japanese emperors.[39]


The Sun is a G-type main-sequence star that comprises about 99.86% of the mass of the Solar System. The Sun has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way, most of which are red dwarfs.[41][42] The Sun is a Population I, or heavy-element-rich,[b] star.[43] The formation of the Sun may have been triggered by shockwaves from one or more nearby supernovae.[44] This is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium, relative to the abundances of these elements in so-called Population II, heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star.[43]

The Sun is by far the brightest object in the Earth's sky, with an apparent magnitude of −26.74.[45][46] This is about 13 billion times brighter than the next brightest star, Sirius, which has an apparent magnitude of −1.46. The mean distance of the Sun's center to Earth's center is approximately 1 astronomical unit (about 150,000,000 km; 93,000,000 mi), though the distance varies as Earth moves from perihelion in January to aphelion in July.[47] At this average distance, light travels from the Sun's horizon to Earth's horizon in about 8 minutes and 19 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports almost all life[c] on Earth by photosynthesis,[48] and drives Earth's climate and weather.

The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above the photosphere.[49] For the purpose of measurement, however, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun.[50] By this measure, the Sun is a near-perfect sphere with an oblateness estimated at about 9 millionths,[51] which means that its polar diameter differs from its equatorial diameter by only 10 kilometres (6.2 mi).[52] The tidal effect of the planets is weak and does not significantly affect the shape of the Sun.[53] The Sun rotates faster at its equator than at its poles. This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at the poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days.[54]


Main article: Sunlight

The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 7003136800000000000♠1,368 W/m2 (watts per square meter) at a distance of one astronomical unit (AU) from the Sun (that is, on or near Earth).[55] Sunlight on the surface of Earth is attenuated by Earth's atmosphere, so that less power arrives at the surface (closer to 7003100000000000000♠1,000 W/m2) in clear conditions when the Sun is near the zenith.[56] Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light.[57] The atmosphere in particular filters out over 70% of solar ultraviolet, especially at the shorter wavelengths.[58] Solar ultraviolet radiation ionizes Earth's dayside upper atmosphere, creating the electrically conducting ionosphere.[59]

The Sun's color is white, with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. When measuring all the photons emitted, the Sun is actually emitting more photons in the green portion of the spectrum than any other.[60][61] When the Sun is low in the sky, atmospheric scattering renders the Sun yellow, red, orange, or magenta. Despite its typical whiteness, most people mentally picture the Sun as yellow; the reasons for this are the subject of debate.[62] The Sun is a G2V star, with G2 indicating its surface temperature of approximately 5,778 K (5,505 °C, 9,941 °F), and V that it, like most stars, is a main-sequence star.[63][64] The average luminance of the Sun is about 1.88 giga candela per square metre, but as viewed through Earth's atmosphere, this is lowered to about 1.44 Gcd/m2.[d] However, the luminance is not constant across the disk of the Sun (limb darkening).


See also: Molecules in stars

The Sun is composed primarily of the chemical elementshydrogen and helium; they account for 74.9% and 23.8% of the mass of the Sun in the photosphere, respectively.[65] All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant.[66]

The Sun inherited its chemical composition from the interstellar medium out of which it formed. The hydrogen and helium in the Sun were produced by Big Bang nucleosynthesis, and the heavier elements were produced by stellar nucleosynthesis in generations of stars that completed their stellar evolution and returned their material to the interstellar medium before the formation of the Sun.[67] The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System.[68] However, since the Sun formed, some of the helium and heavy elements have gravitationally settled from the photosphere. Therefore, in today's photosphere the helium fraction is reduced, and the metallicity is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). The protostellar Sun's composition is believed to have been 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements.[65]

Today, nuclear fusion in the Sun's core has modified the composition by converting hydrogen into helium, so the innermost portion of the Sun is now roughly 60% helium, with the abundance of heavier elements unchanged. Because heat is transferred from the Sun's core by radiation rather than by convection (see Radiative zone below), none of the fusion products from the core have risen to the photosphere.[69]

The reactive core zone of "hydrogen burning", where hydrogen is converted into helium, is starting to surround an inner core of "helium ash". This development will continue and will eventually cause the Sun to leave the main sequence, to become a red giant.[70]

The solar heavy-element abundances described above are typically measured both using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by settling of heavy elements. The two methods generally agree well.[18]

Singly ionized iron-group elements

In the 1970s, much research focused on the abundances of iron-group elements in the Sun.[71][72] Although significant research was done, until 1978 it was difficult to determine the abundances of some iron-group elements (e.g. cobalt and manganese) via spectrography because of their hyperfine structures.[71]

The first largely complete set of oscillator strengths of singly ionized iron-group elements were made available in the 1960s,[73] and these were subsequently improved.[74] In 1978, the abundances of singly ionized elements of the iron group were derived.[71]

Isotopic composition

Various authors have considered the existence of a gradient in the isotopic compositions of solar and planetary noble gases,[75] e.g. correlations between isotopic compositions of neon and xenon in the Sun and on the planets.[76]

Prior to 1983, it was thought that the whole Sun has the same composition as the solar atmosphere.[77] In 1983, it was claimed that it was fractionation in the Sun itself that caused the isotopic-composition relationship between the planetary and solar-wind-implanted noble gases.[77]

Structure and energy production


Main article: Solar core

The core of the Sun extends from the center to about 20–25% of the solar radius.[78] It has a density of up to 7005150000000000000♠150 g/cm3[79][80] (about 150 times the density of water) and a temperature of close to 15.7 million kelvins (K).[80] By contrast, the Sun's surface temperature is approximately 5,800 K. Recent analysis of SOHO mission data favors a faster rotation rate in the core than in the radiative zone above.[78] Through most of the Sun's life, energy has been produced by nuclear fusion in the core region through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen into helium.[81] Only 0.8% of the energy generated in the Sun comes from the CNO cycle, though this proportion is expected to increase as the Sun becomes older.[82]

The core is the only region in the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the power is generated within 24% of the Sun's radius, and by 30% of the radius, fusion has stopped nearly entirely. The remainder of the Sun is heated by this energy as it is transferred outwards through many successive layers, finally to the solar photosphere where it escapes into space as sunlight or the kinetic energy of particles.[63][83]

The proton–proton chain occurs around 7037919999999999999♠9.2×1037 times each second in the core, converting about 3.7×1038 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9×1056 free protons in the Sun), or about 6.2×1011 kg/s.[63] Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of the fused mass as energy,[84] so the Sun releases energy at the mass–energy conversion rate of 4.26 million metric tons per second (which requires 600 metric megatons of hydrogen [85]), for 384.6 yottawatts (7026384600000000000♠3.846×1026 W),[1] or 9.192×1010 megatons of TNT per second. Theoretical models of the Sun's interior indicate a power density of approximately 276.5 W/m3,[86] a value that more nearly approximates that of reptile metabolism or a compost pile[87] than of a thermonuclear bomb.[e]

The fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate.[88][89]

Radiative zone

Main article: Radiative zone

From the core out to about 0.7 solar radii, thermal radiation is the primary means of energy transfer.[90] The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core.[80] This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection, which explains why the transfer of energy through this zone is by radiation instead of thermal convection.[80]Ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions.[90] The density drops a hundredfold (from 20 g/cm3 to 0.2 g/cm3) from 0.25 solar radii to the 0.7 radii, the top of the radiative zone.[90]


Main article: Tachocline

The radiative zone and the convective zone are separated by a transition layer, the tachocline. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another.[91] Presently, it is hypothesized (see Solar dynamo) that a magnetic dynamo within this layer generates the Sun's magnetic field.[80]

Convective zone

Main article: Convection zone

The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at the tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry the majority of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from the top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped to 5,700 K and the density to only 0.2 g/m3 (about 1/6,000 the density of air at sea level).[80]

The thermal columns of the convection zone form an imprint on the surface of the Sun giving it a granular appearance called the solar granulation at the smallest scale and supergranulation at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun.[80] The Sun's thermal columns are Bénard cells and take the shape of hexagonal prisms.[92]


Main article: Photosphere

The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light.[93] Above the photosphere visible sunlight is free to propagate into space, and almost all of its energy escapes the Sun entirely. The change in opacity is due to the decreasing amount of H ions, which absorb visible light easily.[93] Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H ions.[94][95] The photosphere is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening.[93] The spectrum of sunlight has approximately the spectrum of a black-body radiating at about 6,000 K, interspersed with atomic absorption lines from the tenuous layers above the photosphere. The photosphere has a particle density of ~1023 m−3 (about 0.37% of the particle number per volume of Earth's atmosphere at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form.[96]

During early studies of the optical spectrum of the photosphere, some absorption lines were found that did not correspond to any chemical elements then known on Earth. In 1868, Norman Lockyer hypothesized that these absorption lines were caused by a new element that he dubbed helium, after the Greek Sun god Helios. Twenty-five years later, helium was isolated on Earth.[97]


See also: Corona and Coronal loop

During a total solar eclipse, when the disk of the Sun is covered by that of the Moon, parts of the Sun's surrounding atmosphere can be seen. It is composed of four distinct parts: the chromosphere, the transition region, the corona and the heliosphere.

The coolest layer of the Sun is a temperature minimum region extending to about 7005500000000000000♠500 km above the photosphere, and has a temperature of about 7003410000000000000♠4,100 K.[93] This part of the Sun is cool enough to allow the existence of simple molecules such as carbon monoxide and water, which can be detected via their absorption spectra.[98]

The chromosphere, transition region, and corona are much hotter than the surface of the Sun.[93] The reason is not well understood, but evidence suggests that Alfvén waves may have enough energy to heat the corona.[99]

Above the temperature minimum layer is a layer about 7006200000000000000♠2,000 km thick, dominated by a spectrum of emission and absorption lines.[93] It is called the chromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total solar eclipses.[90] The temperature of the chromosphere increases gradually with altitude, ranging up to around 7004200000000000000♠20,000 K near the top.[93] In the upper part of the chromosphere helium becomes partially ionized.[100]

Above the chromosphere, in a thin (about 200 km) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K.[101] The temperature increase is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma.[100] The transition region does not occur at a well-defined altitude. Rather, it forms a kind of nimbus around chromospheric features such as spicules and filaments, and is in constant, chaotic motion.[90] The transition region is not easily visible from Earth's surface, but is readily observable from space by instruments sensitive to the extreme ultraviolet portion of the spectrum.[102]

The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 1015 m−3 to 1016 m−3.[100][f] The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K.[101] Although no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from magnetic reconnection.[101][103] The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into interplanetary space is the solar wind.[103]

The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with the solar wind plasma. This outermost layer of the Sun is defined to begin at the distance where the flow of the solar wind becomes superalfvénic—that is, where the flow becomes faster than the speed of Alfvén waves,[104] at approximately 20 solar radii (0.1 AU). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through the heliosphere,[105][106] forming the solar magnetic field into a spiral shape,[103] until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause.[107] In late 2012 Voyager 1 recorded a marked increase in cosmic ray collisions and a sharp drop in lower energy particles from the solar wind, which suggested that the probe had passed through the heliopause and entered the interstellar medium.[108]

Photons and neutrinos

See also: solar irradiance

High-energy gamma-ray photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only a few millimeters. Re-emission happens in a random direction and usually at a slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years.[109] In contrast, it takes only 2.3 seconds for the neutrinos, which account for about 2% of the total energy production of the Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter, the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state, if the rate of energy generation in its core were suddenly changed.[110]

Neutrinos are also released by the fusion reactions in the core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were lower than theories predicted by a factor of 3. This discrepancy was resolved in 2001 through the discovery of the effects of neutrino oscillation: the Sun emits the number of neutrinos predicted by the theory, but neutrino detectors were missing ​23 of them because the neutrinos had changed flavor by the time they were detected.[111]

Magnetism and activity

Magnetic field

See also: Stellar magnetic field, Sunspots, List of solar cycles, and Solar phenomena

The Sun has a magnetic field that varies across the surface of the Sun. Its polar field is 1–2 gauss (0.0001–0.0002 T), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called sunspots and 10–100 gauss (0.001–0.01 T) in solar prominences.[1]

The magnetic field also varies in time and location. The quasi-periodic 11-year solar cycle is the most prominent variation in which the number and size of sunspots waxes and wanes.[16][113][114]

Sunspots are visible as dark patches on the Sun's photosphere, and correspond to concentrations of magnetic field where the convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, and, so, they appear dark. At a typical solar minimum, few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As the solar cycle progresses towards its maximum, sunspots tend form closer to the solar equator, a phenomenon known as Spörer's law. The largest sunspots can be tens of thousands of kilometers across.[115]

An 11-year sunspot cycle is half of a 22-year Babcock–Leighton dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum, the external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength, but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle, a phenomenon known as the Hale cycle.[116][117]

During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from the poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field.[118][119]

The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field.[103] In an approximation known as ideal magnetohydrodynamics, plasma particles only move along the magnetic field lines. As a result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin current sheet

The effective temperature, or black body temperature, of the Sun (5,777 K) is the temperature a black body of the same size must have to yield the same total emissive power.
During a total solar eclipse, the solar corona can be seen with the naked eye, during the brief period of totality.
Taken by Hinode's Solar Optical Telescope on 12 January 2007, this image of the Sun reveals the filamentary nature of the plasma connecting regions of different magnetic polarity.
Visible light photograph of sunspot, 13 December 2006
In this false-color ultraviolet image, the Sun shows a C3-class solar flare (white area on upper left), a solar tsunami (wave-like structure, upper right) and multiple filaments of plasma following a magnetic field, rising from the stellar surface.

See also:सीरिया, सूरिया,andसरयु



From Sanskritसूर्य(sūrya).


सूर्य• (sūrya) m (Urdu spellingسوریہ‎)

  1. (astronomy)sun





Borrowing from Sanskritसूर्य(sūrya).


सूर्य• (sūrya) m

  1. (astronomy)sun
  2. (mythology)Surya


  • Maxine Berntsen (1982-1983), “सूर्य”, in A Basic Marathi-English Dictionary, New Delhi: American Institute of Indian Studies
  • James Thomas Molesworth (1857), “सूर्य”, in A dictionary, Marathi and English, Bombay: Printed for government at the Bombay Education Society's Press



सूर्य• (sūrya), pronouncedसुर्य (surya)

  1. (astronomy)sun



Variety of सूर(sū́ra, “the sun”), from स्वर्(svàr, “the sun, sunshine”), from Proto-Indo-Iranian*súHr̥, ultimately from Proto-Indo-European*sóh₂wl̥, whence also Ancient Greekἥλιος(hḗlios), Latinsōl and Persianخور‎(khur).



सूर्य• (sū́rya) m

  1. the sun
    • ~1520, Krishna Das Kaviraja, “Ādi-līlā”, in Śrī Caitanya-caritāmṛta[1]:

      एइ चन्द्र सूर्य दुइ परम सदय जगतेर भाग्ये गौडे करिला उदय।
      ei candra sūrya dui parama sadaya jagatera bhāgye gauḍe karilā udaya.
      These two, the sun and moon, are very kind to the people of the world. Thus for the good fortune of all, They have appeared on the horizon of Bengal.
  2. a symbolical expression for the number twelve (in allusion to the sun in the 12 signs of the zodiac)
  3. (Hinduism,Buddhism, Jainism)Surya, the solardeity
  4. A male given name




सूर्य• (sū́rya)

  1. solar



  • Sir Monier Monier-Williams (1898) A Sanskrit-English dictionary etymologically and philologically arranged with special reference to cognate Indo-European languages, Oxford: Clarendon Press, page 1243

0 thoughts on “Essay On Sun In Sanskrit Language”


Leave a Comment

Your email address will not be published. Required fields are marked *